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SUMMARY

PROBLEM

Provide the underwater optical systems designer with a physical description of multiple
scattering of light. Derive simple approximate expressions for the target plane illumin-
ation which are valid in the region of present hardware viewing capabilities.

RESULTS

An iterative method is presented which yields an exporential model for underwater
multiple scattering in the forward direction. An easily evaluated cffective attenuation
cocfficient is derived which al.»ws rapid prediction of flux through an aperture and
on-axis irradiance. Extensive comparison with experimental and Monte Carlo results
indicate that our simple approximate expressions retain predictive value out to seven
to ten attenuation lengths.

RECOMMENDATIONS

Further studies into delimiting the range of validity, relaxing some approximations and
providing more rigorous justification for others, could improve the predictive utility of
the present model.
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INTRODUCTION

Man's increased presence in the underwater environment has led to a need to increase
the range of his sensory perceptions in this unfamiliar milieu. The Naval Undersea
Center has been particularly active in this area. realizing that the ability ‘o perform
useful tasks underwater is determined to a great extent by the quantity and quality of
sensory inputs. Recent years have seen great improvements in our ability to utilize and
exploit the information contained in optical and acoustic signals.

In the field of underwater optics, many techniques have been introduced to cnable
viewing at greater distances. Though each has its disadvantages, the techniques of
range-gating, volume scanning, and adaptive scanning have yielded imagery at greater
distances than heretofore possible. Measurements of water parameters have led to an
increased appreciation of the viewing problem and indicate that further improvements in
viewing range are possible.

Increased optical hardware capability presents a mixed blessing to the systems designer.
To advantage is that he can now specify systems which are certain to yield in¢reased
viewing ranges over prior techniques. However, he has difficulty predicting the per-
formance of these systems since they operate deep in the multiple-scattering domain.
Because the light is scattered many times in its travels from source to target to receiver,
irradiance values become difficult to predict. The use ot conventional single-scattering
formulas can lead to predictions which are in error by orders of magnitude.

The systems designer is thus faced with the problem of designing an underwater view-
ing system which will perform in the complicated multiple-scattering domain. Often
compounding the problem is the designer’s lack of familiarity with multiple scattering
and the mathematical tools necessary to interpret the vast literzture on this subject.
lack of time and money resources, especially in the preliminary design stages, might
also prevent implementation by the designer of Monte Carlo or other computer-based
numerical raethods.

Recognizing the system designer’s dilemma, the Naval Undersea Center (NUC) has
expended considerable effort to give him some methods that are apnlicable to problems
in extended range viewing. A handbook has been published (reference 1) which uses

a hybrid Monte Carlo model and the concept of effective attenuation coefficients to
obtain a description of image quality. Also, a canonical design procedure, interrelating
the various system 2nd component parameters, is presented. Another NUC report
(reference 2) documents the Monte Carlo program used in the handbook and, by
listing the program, aliows the user to generate effective attenuation coefficients for
cross sections not considered in the handbook.

The work herein endecavors to aid the systems designer in two ways not included in the
above reports. First, Part 1 of this work presents a simple analytic model of multiple

scattering of light. 1t is hoped that this model will increase the designer’s appreciation
of the effects of the medium on the system’s viewing capability. Second, Part 1 of this
report provides simple exponential expressions for the flux through an aperture and for

1




the on-axis irradiance. These eapressions are so easy to evaluate that *he implications

of different scattering cross sections, scattering coefficients. and scattering to absorption
coefticient ratios can in turn be quickly and casily evaluated. A further advantage

is that the functional dependence of the effective attenuation coefficient on the medium’s
inherent optical properties is explicitly displayed.

Part 11 of this report exhaustively compares the results of Part | with Monte Carlo
simulations and « -erimental data. Part 11 shows, for the chosen scattering cross
section, that all ti ice methods give results in good agreement for ranges up to six
scattering lengths (i.c., generally seven to ten attenuation lengths), but that the simple
exponential model of Part T breaks down at longer ranges. Since almost all state-
of-the-art viewing systems are limited to six scattering lengths or less, the failure of
the model at longer ranges will probatiy be of little concern to all but the mos:
advanced and highest powered viewing systems applications.




PART I
AN EXPONENTIAL MULTIPLE-SCATTERING MODEL

by

; Alan Gordon
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INTRODUCTION

The p~oblein of evaluating the intensity of a beam which has passed through a multiple
scattering environment has occurred repeatedly in widely varying areas. The passage of
charged particles through thick foils, the shielding and moderating of neutrons, the
scattering of high frequency sound by ship wakes, and the scattering of light both in
the atmosphere and in water are all governed by multiple-scattering effects if the
distances of interest are great enough. Because of the importance of multiple scat-
tering in many fields and over a long time span, the scientific literature is replete with
contributions on the subject. In contrast with most previous works, this report
endeavors, at the sacrifice of some mathematical sophistication, to provide a rather
intuitive approach and results which are computationally convenient.

The theoretical approach which will be used herc is known as an iterative procedure.
Preisendorfer (refercnce 3) has called such a procedure a natural tool **. . . because
the light field N in any medium may be thought of as the superposition of com-
ponent fields N consisting of radiant energy having undergone i scatterings, i = 1,
2. 3, .. ., after entering the mediura”. In addition, this approach has other advan-
tages as far as the underwater systems designer is concerned.

The iterztive method as used here is strictly an integral approach, that is, it sums up
the intensities due to rays traveling from the source plane to the target plane. Since
there is no need to solve differential equations, no knowledge of this subject is
required. All the quantites needed in the calculation are directly physically measurable;
no artificial constructs such as scattering kernels or transmittance operators are intro-
duced. Also, the iterative equations are subject to a simple implementation of the
small angle and of the no-return backscatter approximation, which are a consequence
of the highly peaked nature of the volume scattering function. Without any evaluation
of integrals. the resulting exprcssion for the irradiance yields a straightforward physical
interpretation.  Finally, the iterative procedure used here should have ap 1 to those
readers who may be interested in Monte Carlo techniques, since there a.« many
similarities in the two methods of obtaining intensities in terms of the ray paths.

In presenting the derivation, the author has tried to catalog ail approximations as
explicitly as possible. Physical and/or mathematical justifications are presented with
the hope that the reader will be able to assess the applicability of the present results
to his own particular problem.
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ANALYSIS

STATEMENT OF PROBLEM

The geometry of the problem is shown in figure 1. Here, there is a source plane
which contains an initially specified distribution of light. At a distszice R from the
source plane is the target plane on which we wish to know iii¢ iight distribution. The
space between these planes is filled with water of known optical properties. The
problem is to find the distribution ot the light on the target plane as a function of
the distribution on the source plane, the optical properties of the water, and the
distance R.

Two important restrictions allow us to simplify our problem immediately. First, we
shall neglect diffractive effects. This is a reasonable approximation for most under-
water applications and is discussed in reference 4. Second, we shall deal only with
light intensities and not amplitudes, i.c., we assume an incoherent process.

In view of these restrictions, we can view light propagation in a very naive way. The
source plane is a specified source of photons,* each of which propagates in a straight
line through the medium until 1) it is absorbed and stops, 2) it is scattered and
(possibly) changes direction and continues, or 3) it reaches the target plane and stops.
Figure 1 shows a typical photon which undergoes two scatterings before reaching the
target planc.

We define the light distribution and water parameters in terms of photons although
they could be defined as easily in terms of energy flow. One can hop back and
forth from one description to another through the use of Planck’s expression for the
energy of a photon.

The distribution of light on the source plane will be described in terins of the source
plane’s radiance, N, (x,, Yor 0, 91) defined so that N (Xgs Yoo 0,5 0, )X dy, d
is the number of photons per second leaving the area element dx dy, centered at
(X, ¥) and heading into the solid angle d§2 , centered at the angles 6, and ¢,. The
symbols x,, y, refer to Cartesian coordinates and 6, and ¢, to polar coordinates.

The total flvx, F_, in photons per second leaving the source plane will be

1

0’

Ro = ffNo (Xg Yo 0,9, x5 dQ2 (N

where the limits of integration arc over all x'(; and all Q.

* Photons in the sense of Newton’s corpuscles, i.e., photons which contain energy but no phase information.
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The light distribution at the target is described by the irradiance H( Xps ¥p ), where
Hxp, ¥ ¢ )dx dyp is the number of photons per second arriving at the infinitesimal
area dx . dy centered at (x;, yy). The flux, F, in photons per second entering a
finite area (or aperture) A of the target plane is

F = fH(xT, ypdx (2)
A

The basic optical properties that we need are the water’s absorption coefficient and its
volume scattering function. The absorption coefficient, a, is defined such that a<d®

is the probability of a photon being absorbed after traversing an infinitesimal distance
d2. The volume scattering function, ¢(8), is defined schematically in figure 2 and
algebraically by

o(6) = %{‘{% , 3)

where J(8)dS? is the number of photons per second scattered into a solid angle dQ2
centered at 0, and H is the number of photons per second per unit area (i.e., the
irradiance) entering the scattering volume dV. Integrating equation 3 over §2 and
using equation 2, we obtain

Fw_/J(G)dQ |, f s '0do‘ld9 .
F_ - HIA =127 [ o()sin J’ (4)
since
Fi. = the number of photons per second incoming = HdA
«at = the number of photons per second scattered = fJ(())dQ . &)
dvV = dA - de

Because FSCA,“/Fin is just the probability of being scattered in the distance df, we
define the scattering coefficient s such that the probability of being scattered in the

distance df is
sdf = [217 f o(0)sin0d0:|dQ = [/ o(())dﬂ:ldQ. (6)

We can also define the total attenuation coefficient, «, as

a=ats, (N

i b et LS A e O R4 s ¥ s a0t e
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dVv = dA - df

26)

o) = Hav

Figure 2. Schematic of Scattering Process.
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so that a - dQ is the probability of either being scattered or absorbed in the distance
d€. Finally, we can define the backscatter coefficient b such that bsd® is the prob-
ability of scattering in the distance d¥ by an angle 0 where 7/2< 0 < 7:

T
b= 2SL f o(0)sin0db . (8)
7/2

Having defined the problem and the quantities of interest, we shall now outline the
procedure to be used in arriving at a solution.

OUTLINE OF THE ITERATIVE METHOD

The fundamental concept of the iterative method is that the irradiance on the object
plane, H, caa be regarded as being formed from the infinite series in equation 9 where
H; is the irradiance contribution from all photons which have undergone exactly i
scatterings.

«®

i=0

This decowmnposition is illustrated in figure 3 for i = 0, 1, 2. Here, the source plane

is labeled by O-coordinates, the target plane for the case of N scatterings is labeled

by ?Nﬂ. and a set of N new planes, called scattering planes, is introduced and

labeled by the coordinates i = 1, 2, <<*N, where N is the number of scatterings for

the geometry when the photons scatter exactly N times. All the planes are parallel and
the origins of the planes’ Cartesian coordinate systcims {xi, yi} are all collinear with
a perpendicular joining all the planes. The distance between plane i and i + | is
denoted by r,,, . Also, eacu plane (except the target plane) has a set of polar coordin-
ates assigned thas will be used to reference the direction froin which the photons

leave the planz. The polar coordinates {Oi ; gpi} will be assigned to the i - | plane.

The geometry just introduced allows us to describe the iterative method in a succinct
fashion. First, equation 9 enables us to consider just those photons which have
undergone cxactly N scatterings. These photons will be broken down into groups,
called configurations. Each configuration consists of all photons which 1) scatter
exactly N times and ) scattcr within a distancc dr of r, = ¢, and r, = a, and

e+ Iy = @y and nowhere clse. The no-return backscatter approximation discussed in
the next section will allow us to write a simple ¢xpression for the target plane
irradiance of each configuration. Summing (actually integrating over the r;’s Will then
account for all photons which have scattered exactly N times, i.e., summing over all the
confizurations vyields the irradiance due to cxactly N scatterings, Hy . Finally, the
total irradiance on the target plane due to all the photons leaving the source plane
will be obtaired by summing the Hy’s, N = 0, 1, ---% | according to equation 9.

The iterative method thus involves segregating the light into smali components, solving
the problem for cach component, and then obtaining the total solution by summing
the component solutions. We¢ can do this because of the linecarity of the processes
governing the transfer of radiance.

10
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(b) geometry for photons undergoing (c) geometry for photons undergoing
exactly one scattering axactly two scatterings

Figure 3. Geometry for Zero, One, and Two Scatterings.
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DERIVATION OF THE OBJECT PLANE LIGHT DISTRIBUTION

THE NO-RETURN BACKSCATTER APPROXIMATION - Figure 3(c) iMustrates two
tfundamentally different types of rays (i.e., photon paths) which can occur in a given
configuration. Ray one has the property of Bi < #/2 for all i in the configuration,
i.e. 2 ray such as ray one will never acquire a component of motion dirccted from
the target plane to the source plare. As a consequence, all rays having this property
also have the following properties: 1) all the photons enter each plane at which they
are scattered from below (i.e., from a direction towards the source plane) and 2) cach
scattering occurs sequentially, i.e.. the ray scatters from the first scattering plane, then
the second and so on. Rays such as ray two have the property of 0; > #/2 for

some i. For a given configuration, this implies that 1) type two rays can enter any
scattering plane from either above or below and 2) type two rays can scatter from

the scattering plancs in any order (e.g.. in figure 3(c) ray two scatters from the

planes in the order 0-2-1-3). Clearly. type two rays undergo a more complex scattering
behavior and make our problem of evaluating the object plane irradiance more difficult.

Fortunately, in typical oceanic waters type two rays are uncommon compared to type
one rays. This is a direct consequence of the small value of the backscatter coef-
ficient of occan waters. An average of three readily available backscatter coefficients
(references 5 through 7) indicates a value of b = 0.023. Using the results in appendix
A. we cuan express the rauge R at which ignoring type two rays introduces an error €
in the flux reaching thz target plane as

R = € (10)

where ¢ is the scattering to absorption coefficient (s/a) ratio and R is given in scat-
tering lengths. Taking ¢ = 5.0 (a rather large value), € = 0.05, and b = 0.03, we

have R = 22 scattering lengths, a distance much greater than distances of interest here.
Thus. we will ignore the contribution of type two rays in all the following calculations.

The remaining type one rays have the important property of interacting with each
scattering plane sequentially. This means that the radiance distribution emerging from
the i + 1 scattering plane is complctely determined by the radiance distribution on

the i plane. Thus, to solve the problem of the irradiance on the target plane for a
configurat;on containing N scattering planes, we need only compute 1) the radiance
distribution emerging from a scattering plane due to the radiance distribution on the
immediately preceding scattering (or source) planc and 2) the irradiance distribution on
the target plane due to the radiance distribution on the last scattering plane.

TRANSFER OF RADIANCE AND IRRADIANCE - Figure 4 shows the geometry for
which we will calculate the transfer of radiance between two planes. The geometry
and symbols are similar to those shown in figure 3. The known quantities are N
(Xos Yoo 4,5 ¥,), the radiance distribution on the O-plane, the water parameters, and
the distance r,. It is desired to cbtain the outgoing radiance of the I-planc in terms
of these parameters.

12
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The radiant intensity emitted by a small area dA = dx., dy, of the O-plane centered
at (xo, yo) is

N(xo. Yo 01. spl)dxo dyo, {n
where
[(x, - x ) +(y, -y )* 1"
0, = arc tan =A% ! - (12)
rl
and
y, -
¢, = arc tan (—' 9). (13)
X

The total j hoton flux within the solid angle d2,. bounded by 8, to 0, + d0, and
¢, tog, +dp ,is then

No(Xgr Yoo 0.5 ¢, )dx, dy,, dS2,. (14

In free space equation 14 would represent the flux actually reaching the l-plane. How-
ever, because of the scattering and absorpiive properties of the water lying between the
planes. not all of this flux reaches the 1-plane.

Considering the scattering interation first, the iterative inodel requires that in any

given configuration we deal only with the rays that scatter within a distance dr of the
scattering plane (in this case the l-plane). By considering the probability of not
scattering in the distance r , we will find the fraction of the flux {given by equation
14) which reaches the 1-plane unscattered.

If we make the usual assumption that the probability of scattering in a short distance
A¢ is given by

sAL, (15)
then the probability of not scattering in that distance is
1 - sAf (16)
and the probability of not scattering in the distance 2AY% is
(1 - sAQ)(1 - sAR) = (1 - sAQ)?. (an
Now an arbitrary distance, Ql, may be represented as

2 = nAXL. (18)

1
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Then, by generalizing equation 17, we obtain the probability of not scattering
in the distance Ql, Pm(Ql). as

3
P () = [1- 2 (19)

for n=> x Ag-d¢ and

SQ n
P (¢)=1tm [1--1) =%, (20)
n

n- oc

Early in this section we stated that the effects of absorption can be accounted for by
terminating absorbed rays at the point where they are absorbed. Although this is
proper. it is inconvenient to terminate rays in the iterative approach. Instead, we
shall use an equivalent procedure (reference &) which allows cach ray to continue on
through but weights its intensity by the probability of it not being absorbed in the
distance traveled. Since the probability of being absorbed in the short distance A%

is given as a A€, we obtain by a procedure identical to equation 16 through 20, for

the probability of not being absorbed in the finite distance ¢, P (€ ):

Pnn(Ql):C-qu~ (2hH)

The probability of veing neither scattered nor absorbed in the distance €, is then

(ars) ! =
“(aty ) ——— Pl
“(a+s )Ql con ) 1 cos 0l 4
= = = 7
Pns.n.x(Ql) =¢ ¢ v . (22)
The amnount of flux leaving the 1-plane from the element dx,, dy,, in the direction d€2,
which arrives at the 2-plane. is then
e
cos 01
e No(Xg Voo 050, ) dx dy, dS2, (23)
Now from figure 4,
[ dA’ cos® 0
qo = AL 94y ¥ by (24)
o 2



Using equation 23 and 24 we obtain for the irradiance on the frontal plane dA| of
the scattering volume dV

arl

, cos 91_ . cos? 0,
H(dA)) = ¢ No(kg» Yoo 0, ¢, )X dyy —5— - (25)
1

Inserting this value inio equation 3, we can calculate ‘”1("1’ Yy 02, ®,) the scat-
tered flux leaving the volume element dV on the I-plane due to the flux arriving at
dV from the vicinity of Xg» Yoo a8

arl
" cos ol i cos? ,
aJ, (x,, v, 0,,9,) = ¢ NofXgs Yoo 0,0 9 dx, dyg 0 (6, ,)dv,
1

(26)

where 6, is the angle between the incoming and scattered photon, ie.,

021 = arc cos[sinf)l cosy, sinf, cosy,

+sinf | sing, sinf, sing, +cosf, cosl, |. 27

At this point it is convenient to introduce the scattering probability density p(@) such that

p(0) = _E_g(ﬂ_ (28)

so that

/P(G)dfl = . (29)

Noting that ¢V = dA, dr,, we can now write (using equations 26 and 28)

l)

arl

N Sdl‘l cos 01

I

cos? 0,p(0,,) dx, dy,. (30)

The radiance, ¢N, (x,, y,, 0,, ¢,), emerging from (x,, y,) and heading in the
direction (6,, ¢,) due to photons entering the scattering volume dV from an elemental

area surrounding (Xg» yo) is

16

PP P I L



"

Olrl
AT, cosf
db!](xlv yly 02v \02) = ?_l'c S 1 NO(XO’ :,01 olv ‘pl)
1
cos*0, (0, )dxg, dy,. 3D

Integrating equation 31 over the 0O-plane coordinates we obtain the radiance, N (x,,
Y, 0,‘. v,), emerging from the point (x,, y ) and heading in the direction (0,, ¢,)
as

(Xrl
sdr ) cos 0-
Nl(xl’ yla 021 “02 = T{’l' [j € . NO(XO, yo, 01, pl).
cos? 6 p(6,,)dx, dy,. (32)

Noting that

cos® 0 dx, dy,

iQ, = i (33)
. P
we arrive at
Olrl
cos 01
_ e
N, x,,¥,,0,,9,) = sdr, cos()l— Nop(()“)dﬂl, (34)

which achieves our desired result of expressing the 1-plane radiance in terms of the
O-plane radiance. Since our derivation did not depend on the detailed properties «.
the O-plane or 1-plane, the subscripts 0 and 1 are dummy indices and we can immed-
iately write

(Xr2

coso,2

' — s €
Nyl ¥y 040 5) = s, | = N p(0,)492,. (35)

Substituting the results of equation 34 into equation 35 we obtain

(sz C!rl
/-- C()SB.2 : C()Sol
N.(x,, V., 0., 9.)=s%dr, dr, [ I& g
2\ Y0 V3o ¥ 2 l_] cos()2 cos()l
Nop(6, )p(6,,)d2, d,. (36)

17



Clearly, by continuing this procedure, we can obtain the radiance emitted by the
N™ scattering plane as

O{ri
N ) .;'us 01
N, Yor Blredis W50, )3 Hlsdri Lcos(fi po,,, L, | N (37)
I+ :
N
where I a, indicates the product of all the a’s, 1= 1, 20+« N, and where the
i+

quantity in brackets acts as an operator on N, Equation 37 thus provides us with
an expression for the radiance leaving the last scatiering plane of an N-scattering plane
configuration in terms of the initial radiance, Nj. and the water characteristics.

To complete the solution for a given configuration we need the target plane trradiance
in terms of the radiance leaving the N™ scattering plane. The geometry for this
process is shown in figure 5. The flux, d® F(xy- Yy Ox4p- $x54q)s leaving an area
surrounding the point (xy. yy) and heading into the element of solid angle centered
at (0, ¢n4y ) is expressed according to cquation 23:

Ratd 3
= L080N+|
d*F(Xy- Yys Opypo Peg? = € N s Yne Onsgs Py
dx, Ay, 4y, (38}

where NN(x\,. Yo a up,\,+1) is the radiance leaving the N™ scattering planc.

: N+1°
Since
dA’,,  cos?)
= N+ 1 INH
dQy,y = o (39)
N+1
and
d& gy = Ao n 1 W WY 4 (40)
we have
CEiNEn
cos dx,, dy,, cos?0
1 = N+ NN M+ :
iR Vi @ ds Pei) =8 ¥ NydAy,, | ————") 41

Letting 70, be the irradiance on the target plane due to a configuration containing N
scattering planes, we have
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¢ 5. Target Plane Irradiance Geometry.

o e R s D A el

—XN

19



La o)

O.‘rN+l_

0
dJCN = Ccos N+1 N

N YN Ona gy O 824 (42)

and the irradiance of the given configuration is

i L LIV
cosly | .
Ky = e Ny Oy Yno One s Oy 824 (43)
2541

Tc obtain the cotal target plane irradiance, Hy, of all configurations which involve
exactly N scatterings, we must sum over all configurations, i.e., we must integrate

Hy over all the drj, i =1 -=N. For example,
for H|
EER
His f (44)
r,=0
for H,
r,=R T SR,
H, = f / K, (45)
A= r,=0
for H,
;=R r,=R-r, 5 =l gar,
H, = / f / H,. (46)
r,=0 r,=0 =0
and. in general,
N
.=R- z
N rl i+1 r!
g =il T Wy (47)
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with the conventions

N
T r=0
N+1 !

and where the quantity in brackets in equation 47 operates on (.

Inserting the results of equations 37 and 43 into equation 47 yields Hy as

N

rr =R-% 1
N+1
n
=1
I'l' =0

Olri

COSGi

x e .
”—fi‘pmm.i)dﬂidri No b

Q,

where the factor within the square brackets acts as an operator and the following

converiions apply:*

L
< z
i=k
.
For example,
H0=
2
1
and
[0 8]
1
R ) cos()l
Ho=s / / / e !
cosG1
0 9.2 Ql

* where Qlry 4,

qQ(rN+l)drN+l

PN+ 2o Ney) =1

= Qlry, )

1

I 0 fork)® F

cos(?i i <N

] i =N+l
/

O(rl
" cos
f Noe d d&ﬂll

o (R-r‘)

cos 92

e Nop(0,,)d€2, A€, dr, .

) is an arbitrary function of ry,,

(48)

(49)

(50)
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We achieve our goal of expressing the target plane irradiance in terms of the imitial
radiance and the water parameters by summing equation 49 according to equation 9:

N arl-
'— R-2 r, - —_—
0 . N+1 i ] . cosoi
H=2 |1 e p0, MR dr | NG | (53)
0 Q ‘

In some cases we are interested in the flux, F, through an aperture, A, on the target

plane. This is a somewhat cruder measure of the target light distribution and can be
expressed as

F= J HdZ 54)
A

where H is given by equation 53. Using that equation and interchanging summation
and integration we obtain

_ R-Z r. N
0 N+1 T cos0i
= NEO GN i c T P(Uiﬂ’ ;dQ.dr, Nod’-‘;:y (55)
o r: !

From equation 55 we see that the flux, F, also consists of components, each com-
ponent resulting from photons which have scattered exactly N times.

SMALL ANGLE APPROXIMATION - Although equation 53 provides a complete solu-
tion for the target plane irradiance, it suffers from two major difficulties. Being an infinite
series, the N® term of which involves a 2N—tuple integral, equation 53-poses serious
computational problems. Second, the individual terms of the series are not in a form
which is subject to the most fruitful physical interpretation. When the sinall angle
approximation is employed, equation 53 can be cast in a form which is very revealing.

The small angle approximation involves the assmption that cosf. ~ 1 for all i. For

moderate ranges and for angular apertures 8 (as viewed from the source plane) which
fulfill cos6 ~ 1, this approximation will be valid for the overwhelming majority of

2
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the rays due to the highly peaked nature of oceanic scattering cross sections. For any
range and ray, if 0 is large, 6, will clearly be large for some i, and the approximation
does not describe the target irradiance at these angles. Also, as the range between
target and source planes increases, the maximum angle 0. at which the approxi-
mation holds becomes smaller. Because optical viewing systems often perform in the
region of moderate § and R. we shall employ the smui: angle approximation in all
that follows.

N
Setting cosf, = 1 in equation 53 and noting that £ r, = R, we obtain
=1
N
R- 2 r.
S N+1 -y
H = NE=O sVe 21 PO, pd&dr, | N, (56)
0 Q.
From apoendix B we have the formula
N
R- £ r,
N+1 i+1 RN
n ar, = Ko . (57)

Multiplying equation 56 by the right-hand side of equation 57 and dividing by the
left-hand side, we obtain

x© N ,-sR
_ .~aR (sR)'e
H = @ I\?:O GRY S _<hN> , (58)
where
N+1
hN = H ‘/Ap(()iﬂi i)d.Qi NO (59)
i:
Q, J
and

- i
(hN> L0 N . (60)
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Equation 58 is a simple and readily interpretable form for the target plane irradiance.
Imagine the target and source plane separated by vacuum rather than water. Into
this vacuum we insert N scattering planes. Each scattering plane has the property of
unity probatility of scattering a photon with an angular probability density p(6, an D
The planes are located at r, = a . r, =a, *-, ry = ay. The ‘arget plane irradiance
due to the source plane’s radiance propagating through these scattering planes is then
hy .
<hN> is the value of the target planc irradiance averaged over all possible values of
the r;’s. From equation 60 we note that this average takes place without a weighting
factor dependent on any of the r’s. This means that, given the fact that N scat-
terings occur, any of the configurations of the scattering planes is equally likely.

According to equation 58, we next compute the weighted sum of the hN> ’s,
These weights are just the probability of scattering exactly N times. From equation
58 we see that this probability is given by the Poisson distribution with a mean
number of scatterings equal to sR.

Finally, the target irradiance H is obtained from this weighted sum by multiplying
by e’®®. All the effects of absorption are accounted for by this factor which repre-
scnts the fraction of flux that reaches the target plane without being absorbed.

The simplicity of equation 38 is due to the small angle and no-return backscatter
approximations. Unfortunately, except for the first two terms, it cannot be directly
evaluated. In the next section we shall establish some preliminary relations between
the flux through an aperture and on-axis irradiance, leading to approximations for
these quantities which can be easily evaluated.

RELATIONSHIP BETWEEN FLUX AND ON-AXIS IRRADIANCE — One of the
factors that makes equation 58 difficult to cvaluate is the possible generality of the
source plane irradiance N,. This difficulty can be alleviated by restricting equation 58

to the case where N is a unidirectional, unipotent point source located at the origin
and symbolized by NgP*.

) ->
N(‘;p“ = 8(cosf, - 1)8(p,)b(xy) 61
where N(‘;P’ is of unit strength since
f NEPS dQ dxy = 1. (62)

The restriction of N to ngs can be made without loss of generality in the small
angle upproximation. If HP%(x, Yp. R) is the target plane irradiance resulting from
a source plane radiance ngs(xo, Yo 0,5 ¢,), then the target planc irradiance
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Hip. yp. R) of an arbitrary source N (X, ¥, 0, ¥,) can be expressed as

H(x;, y1, R) ={ ffH"Ps(xT - Xo - RO cosp,, yp -y, - RO siny, . R) -

<>
No(Xgr Yo 8,5 9, )dxodﬂl} (63)

in the small angle approximation. Equation 63 is just a convolution bc.ween HYPS
and N, with H'P® serving as an impulse response function.

The function H'P® has much utility in the field of underwater optics and is known

as the beam spread function. Due to the reciprccity theorem for underwater optics
(reference 9), HYPS also yields (aside from scale factors) the point spread function,
which is the image plane irradiance due to light radiated by an omnidirectional point
source. The Fourier transform of the point spread function, known as the modulation
transfer function (MTF), is used to describe contrast degradation as a function of
range and spatiwal frequency.

Our main use of H"PS will be in conjunction with equation 63 and for the case

where N becomes the radiance distribution, N, duc to a point source conical
beam of strength F, and solid angle £ expressed as

Fo >
—QQ 6(x0) ()l, P, € SZC

N, = . (64)
0 0]’ ¢| é QC

The on-axis (i.e., Xp = 0, yr = 0) irradiance due to this source is, from equation 63,

H(O, O, R) = { [/Hups (-x0 -R()lcos;pl Y -R()lsimpl, R) -

g
28 (Rodxgd2, } . (65)
C

Letting

x = R cosp,; y = RE, sing, (66)

and dropping the dummy index 1, we have

F F(,)
QR? |’

H(O,0,R) =

(67)

ot 0




where

F(2,) = /‘H""S (x.y,R)dxdy. (68)
L9

~

Equation 67 has been previously derive¢ by Funk (reference 10) for the case of a
spherical geometry.

Equation 67 allows us to e¢valuate the on-axis irradiance of conical beams. The
restriction to on-axis irradiance is usually of little practical consequence since it is
common to evaluate imaging systems on the basis of on-axis performance (reference
11). Equation 67 may be used to delimit the on-axis irradiance of a square beam
by considering the irradiance of the inscribed and circumscribed cones.

The most important property of the on-axis irradiance 1s that it is proportional to the
integral of the “ups™ irradiance across the beamwidth. The significance of this result

is that the spatial derivative of the flux (i.e., the irradiance) can bz expressed in terms
of the flux alone. In view of the approximations we are about to make, this is a
welcome property since a function itself is often less sensitive to certain approximations
than its derivative.

FLUX THROUGH AN APERTURE - The primary goal of this section is to compute
F(82) (¢quation 68). Knowledge of this function wili allow evaluation of the on-axis
irradiance as well as energy distribution contours in the target plane.
Using cquation 58 to express HYPS we have
Hops = R 5 GRNTT nars> (69)
N=0 N CINZA '

where from equation 59

N+1
Wt = ‘nl PO, ) NY* da.. (70)
l:
Q.

Substituting cquation 69 into equation 68, we obtain

e e} N ,-sR
FQ) = eak 3 (RITe™ e (71)




with

S = S >
NP = fhgxps dXnyy- (72)

Although equation 71 is simple in form, consideration of equations 72 and 70 shows
that its evaluation is non-tnivial. To obtain an indication of how to proceed, we
rearrange equation 71:

fo's) N ups
F(Q) = ¢?R ¢sR 3 R) N.,QN > (73)
N=0 e

1t 1s now clear that approximating <f,f;pS by a quantity of the form

{gr> ~ b (74)

will make equation 73 summable (to a exponential) and also will require the evalua-
tion of only two quantities (a and P) rather than the infinite set s frfl”'s } . Some
justifications for approximating <Y§P‘> by -

ups

Gy~ D 09

will now be given.

Inspecting equation 75 shows that <fgps> is reproduced exactly for N = 0 or |
and thus the approximation is correct for small distances, i.e., for SR << 1.

Second, equation 75 is correct when the scattering function p(8) is a delta function.
i.e., when

p(0) = Blcos - 1)
s

-

(76)

Since oceanic scattering functions are highly peaked, agreement of equation 75 in the
limit of equation 76 is reassuring.
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Finally, equation 75 is subject to a simple physical interpretation. It states that the
amount of the flux ( ¢ t‘;,"‘ > ) reaching the aperture § after N scatterings equals the
original source strengtn ({ fP* >) times a factor ({ f}'P* V1< fgP* >), which
cquals the probability of being scattered by less than an angle £, this probability
being raised to the N'* power. Thus, equation 75 assumes that the result of N
scatterings is the same as the result of N consecutive single scatterings. For these
scatterings only the flux within an angle § contributes to the source term for the next
scattering, and the flux distribution resulting from any given scattering can be consoli-
dated into a point source. This interpretation seems reasonable for scattering at
moderate ranges by a volume scattering functi>n which is highly peaked. At longer
ranges. equation 75 must break down since some of the flux originally scattered out-
side § will retumn and the succeeding source distributions will depart significantly from
point sources.

A rigorous mathematical argument concerning the domain of validity of equation 75
is beyond the scope of this work. Qur main justification for this approximation lies
in Part 11 of this report, in which formulas based on this approximation show good

agreement with both Monte Carlo and experimental results. Utilizing equations 75
and 73, we obtain

F(Q) = <fuops> o QR +s <f"l’ps>/<fzps> R 7

To proceed. we must evaluate <f‘l‘Ps> and <f“ops> . From equations 61. 70.
and 72 we have

Sy = ff v aa,
= f f 8(cosd, - 1)5(y, )8(Xg)dS2, dX; . (78)
Now,

5().(-:) = 5(x0\5(y0) = 5(xI - ROl(‘OSnp‘ )8ly, - RY sing ). (79)

Evaluating the delta function over d€2  we obtain

GO e (80)

SO

ey =1 (81)
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For {pursy |
iDs -
G _f%._*f J f__?“’u) N d,df, di,dr, (82)
/drl

Integrating over a2,

<fups> ad J[-/—/ l:’(02 )6(X1 )6()’, )dQZd;(Z*drl . (83)
1
-/‘drl

Writing
dx dy cos30. dx dy
sz, = _;YI‘LJE L= L. (84)
2 2

2 r2

and integrating over X, . we obtain

“rpd,)
e

Gy -2

S (85)
fdrl
Using
P
[x2 + y2]
0, = arc tan e [ /11 (86)
5
and
>
dx dx, dy
2] py 2 2 ~ = 1
2T T F0,d0,dp, =0 (87)
2 2

and dropping the subscript 2, we obtain

R

/ / p(0)IQ | dr,

< f1;m> = 9__.._,311_]%_‘“_*___—_1_.__ , (88)

dr1
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where 6, is the half-angle subtended by a circular aperture (or by the intersection
of a conical beam) centered on the target plane as viewed from the first scattering
plane, i.e.,

r

BA = arc¢ tan —r—A- . (89)
2

where v, is the radiuc of the aperture.

A
We note that the quantity in square brackets in equation 88 is just the distribution
function associated with the normalized cross section p(€#). The distribution functicn
is the form in which underwater cross sections are often tabulated: howcver, evalua-
tion of <f‘:p‘> requires the value of the distribution function to be averaged
over r,. In linc with our attempt to present the simplest possible description of
nultiple scattering which retains some predictive value, we shall now approximate

v vy
!

SHORSREA 00)
|

r, =R/2

That is, we shall drop the average over the scattering plane’s location in favor of
evaluating the function f“lps for the case of the scattering plane located exactly
halfway between the source planc and the target plane. This yields

fups ~ fups =/ (0)d2,
A p(0) o1

where 6' is the polar half-angle subtended by the circular aperture for an on-axis
observer located midway between the source and target plane.

Using equations 91, 81, and 77, we obtain for FF(£2), the flux through a circular
aperture due to a unidirectional point source of unit strength,

[I:ous J[ p(6)d2 | rR
0

F(Q) = ¢ . (92)

Due to the linearity of the scattering process, for a source of strength F equation 88
becomes

30

i s i il




T T ST

[-ou-s ] p(O)dQJ R

6
FQ) = F, ¢ : (93)

Using equations 92 and 67, we obtain for H(0O,0.R). the on-axis target plane irradiance
due to a point conical beam of solid angle SZC and strength F,

-a+sf p(0)d2] Rr
5 0 -

H(C.O.R) = ~ e . (94)
QR?

We note that both the flux through an aperture and the on-axis irradiance are governed
by an effective attenuation coefficient, [ S defined by

@ =€ f p(0)Q | . 95)
OJ

In addition to being eusily calculable, @, also has reasonable limiting forms. For
0'-0, o, ¢~ . as would be expected from a narrow beam where almost all scattered
photons remain outside the beam. For 0'-n, o o, which corresponds to the
intuitive statement that if all the scattered light remains in the beam. this light is
then attenuated by the absorption coefficient.
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CONCLUSION

Equations 93 and 94 represent the main formulas of computational interest to the
systems designer. With very little computational investment, they provide useful
expressions for flux and on-axis ircadiance. Part II of this report shows that (for
the cross section tested) equation 93 retains predictive value out to six scattering
lengths or seven to ten attenuation lengths, depending on the s/a ratio.

We have used equation 58 as a starting point for deriving expressions for on-axis
irradiance and flux through an aperture. It also serves as an excellent departure for
the derivation of the water’s MTF. By taking the Fourier transform of equation 58
and applying the small angle approximation consistently, a series expression for the
MTF can be obtained. By suitably applying and extending the model other quantities,
such as off-axis irradiance, can also be derived.

The iterative method has shown its ability to yield results in agreement with
Monte Carlo, experimental, and analvtic approaches and should thus be considered
a useful and important approach to multiple scattering problems.
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APPENDIX A
THE NO-RETURN BACKSCATTER APPROXIMATION

We will confine our attention to scattering on a line since for this case the problem
is exactly solvable. In figure A-l, F is a source of photons located at x = 0, where
all these photons initially travel to the right on the line [0, ] and

u(x) = flux at point x traveling to the right

v(x) =  flux at point x traveling to the left

b,a.s = backscatter, absorption, and scatiering coefficient, respectively
A = a small increment in length along the x-axis

bsA =  probability of being backscattered in the interval A

aA

probability of being absorbed in the interval A.

By considering the various loss and gain processes, we can write for u(x)

u(x + A) = u(x) - aAu(x) - bsAu(x) + bsAv(x + A). (A-D)

In this equation, u(x) is the original fiux, aAu(x) is the amount lost by absorption,
bsAu(x) is the amount lost by backscatter, and bsAv(x + A) is the amount of flux
gained by the rightward-moving beam due to backscatter of the leftward-moving beam
(i.e., the returned backscatter).

Noting that

vix + A ~ve) + [ A (A-2)
dx
X=X
we have, to first order in A,
ux + A) = u(x) - (a + bs)Au(x) + bsAv(x) . (A-3)
Similarly, for v,
v(x) = v(x + A) - (a + bs)Av(x) + bsAu(x) . (A-4)

Dividing equations A-3 and A-4 by A, and rearranging and letting A—~0, we obtain

du = qu(x) + bsv(x) (A-5)
dx
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Figure A-1. One-Dimensional Backscatter Geometry.



and

%:IE = +qv(x) - bsu(x) , (A-6)

where q = a 1 bs.

Differentiating equation A-5 and using equations A-5 and A-6, we obtain

gi:q =4 ‘d_ll + bs ._d_v
dx* dx dx

-q(-quix) + bsv(x)) + bs(qv(x) - bsu(x))

Py = g2 - s (A-T)
dx
Similarly, for v(x),
&Y = @ - 92 (A-8)
dx

Therefore, u and v have solutions of the form

-\)qz,(bs)z 3 + a2 bn? s

u(x) = Ae + Be (A-9)

and -
Y q2 - (hs)2 X +Vq2 g (bs)2 X

v(x) = Ce + De . (A-10)

Because of the absorptive properties, we require u(x) and v(x)—0 as x> + o | so that

-V ¢2 - wn? o«

u(x) = Ae (A-11)

and

-V q?-mn?

v(x) = Ce , (A-12)




whence

S \lq2 - (bs)2 X

u(x) = Foe . (A-13)

but u(x = 0) = Fo => A= Fo,

T

And by substituting equations A-13 and A-12 into equations A-5 and A-6, we obtain

c=a- Ng?-(bs)f bs F (A-14)

o} o
bs a+ V@ - (bsy?
i Now making the no-return backscatter approximation means we drop the term

+ bsAv(x) from equation A-3, obtaining
ux + A) = u(x) - (4 + bs)Au(x) (A-15)

and rearranging and letting A—0. we obtain

du - qux) | (A-16)
dx

which has the solution

u(x) = Foe™ . (A-17)

The question is, at what range x = r does the flux predicted by the simplified result,
equation A-17, begin to depart significantly from equation A-13, which includes the
effects of returned backscatter. If we define a fractional error € «< 1 as a significant
departure, then we require

(o) & (A-18)
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+(- \/q2 - )2 + gy

€

Letting

LT ]

we have

=] +e.

s/c
s/a ratio
R

+-1/c Vl + 2bc + 1/c + b)R

for ocean waters

2bc « |,
so that
(1 +2bc)” T 1 + be -
Inserting equation A-23 into A-21,
bz," .
o
e =1+¢,
but since € << 1 we obtain
5
R = <€
b2 ¢

(be)?
2

(A-19)

(A-20)

(A-21)

(A-22)

(A-23)

(A-24)

(A-25)
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APPENDIX B
PROOF OF EQUATION 57

Equation 57 asserts that

N
R- 2 r
i N+1 i+1 RN
{ll drI = NI
0
First, we will verify this formula for N = 1. 2, 3.
For N = 1, |
R- £ r, R
E ] i+1 Rl
n dr, = drl =R = =5
1=1 !
0
For N = 2,

DT
\‘
P}
-il"u
=
_I
’\_\
=
\\‘
&
Nﬂ
o
_"3
=

dr. =
0 G 0
R
=/ (R - 1, )dr,
0
R
r2
= (Rr’ a1 _2_)
=B
0
_p2 R _R?
RS =5y
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R R-r3
= / / (R - ry - rz)drzdr3

e
=)

3
= 1/2 [R2r3 < Riy # =

_R¥_R?
T 6 31
Now, if we define
N
- I-R- ifl T R R-rN R-rN-rNH K- I,
T j dr, =
=1
0 0 0 0 0

and assume

we need only prove that

3 RN +1
T (NFI)!

Fys (R)
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; R[ /Ry, R- -,

’ = / .o dr] ces drN drN+]
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A: R.' 3

Letting R - r,,, =

then
/‘R [ "R R e
FN+|(R)=J / J drl drN drN” ,
0 [0 0

but the quantity in brackets is Fy(R'),

)
B N
5 - (R)
Fnei(R) '/ NT A
0
< But
dry,, = -dR
,,. for
Tyey =0 R'=R
Iye; = R R'=0
so that
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and evaluating the integral yields
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INTRODUCTION

The purpose of this section 1s to evaluate the predictions of radiant energy flux
through an aperture developed from Gordon's exponential model. This will be done by
comparing them with the predictions of 4 Monte Carlo simulation model and with
experimental data.

The radiant cnergy tlux passing through an aperture has significance in underwater
optics for two reasons. First, it is important in areas concerning the power distribution
of a collimated source (e.g., a laser) after the beam has travelled a given distance under-
water: for example, target illumination or amount of encrgy reaching a receiver.

Second, the flux through an aperture is related to the on-axis irradiance of a conical
beam, which is significant because the available irradiance is an important design param-
eter for underwater optical imaging systems.

Because of the significance of the radiant energy flux, rather lengthy comparisons will
be made of this quantity as a function of aperture angle, range, and scattering to
absorption coefficient (s/a) ratio. It is hoped that these comparisons will serve as a
guide to the various r:gions of validity for the results of Gordon.
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COMPARISON SOURCES

EXPONENTIAL MULTIPLE-SCATTERING MODEL

The exponential multiple-scattering model developed by Gordon in Part 1 is presently
formulated to predict the radiant energy flux produced by a unidirectional point source
for a given combination of range. aperture angle, and s/a ratio.

To illustrate the geometry of this model, let a unidirectional point source illuminate a
screen placed perpendicular to the light source axis. If F is the radiant energy emitted
by the unidirectional point source and F is the energy flux intercepted by the screen
placed at a distance R inside a cone of half-angle ¥ (a circular aperture of radius r),
then the ratio of these will yield the fraction of energy that remains inside the circular
aperture. Tius arrangement is shown in figure 1.*

The basic equation of the model as given by Gordon is

o {[—(x+s ,P(o)dSl]R} 0
- e 'y b
Fy
where
a = total attenuation cocfficient (meters™!).
P(o) = (o) (0)/s = protability density function of volume scattering,
R = range (meters).
v = half-angle of the cone measured from the midpoint of the range
(degrees),
E = normalized radiant energy flux through the .urget aperture
F- = »d radic t g warget ap )

It has been established that the ratio ¢ = s/a is easily measured. but the quantity s
itself is not. To write equation 1 in terms of the ratio ¢, the quantity oR, which

defines the range as measured in attenuation lengths, must be written in terms of c.
Substituting the definition of the total attenuation coetficient

oa=at+s, (2)
aR can be written as
aR = (a + )R
= aR(l + o). (3)

*Figures are placed ct the end of Part I,

46




s o

Rewriting equation 1, we obtain

E - l-aR+ sR'/;,P(a)dSZ]

T
i

el-aR + caR [ P(0)dS§2)
¥

P- < f,
= e ‘R[ I+ C/7 P(a)dﬂ]. (4)

rrom equation 4 it can be seen that the radiant energy flux for a unidirectional point
source decreases exponentially with distance. 1t can also be seen that an effective
attenuation coefficient, a,pp, can be defined such that

<

®eff = “[1 S ,YIP(a)dSZ] : (5)

Single-scatter underwater visibility models predict a normaiized radiant energy flux
given by

which corresponds to

fY'P(o)dQ = 0.

Therefore, the effective attenuation coefficient a,gp is bounded on one side by a.
On the other side, the effective attenuation coefficient is bounded by a- s since

i ZﬂrP(o)dQ >9Q

and
£ = S
1 +¢ o
Hence,
@ > o 2 A (6)

MONTE CARLO SIMULATION MODEL

In order to simulate increasingly complex underwater imaging systems, Funk has
developed a method for describing the propagation of light underwater that inciudes

the effects of multiple-scatterings (references 1 and 2). In this method Montc Carlo
techniques are used to calculate effective attenuation coefficients for illuminating, image-
forming, and backscattered light; these coefficients permit the most significant effects
of muitiple-scattering to be incorporated into an underwater visibility model.
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The simplest form of the Monte Carlo calculations for predicting the radiant energy
flux from a unidirectional point source is a specialized three-dimensional random walk.
The scattering and absorption properties of the water are found in terms of probability

distribution functions thnt characterize the direction and length of cach step in the
random walk.

DATA FROM DUNTLEY'S EXPERIMENTS

For a number of vears, S. Q. Duntley of Scripps Institution of Occanography, Visibility
Laboratory, has been investigating the propagation of light in water. During this
investigation. numerous experiments were performed in both fresh water at Diamond
Istand, New Hampshire. and simulated ocean water of various s/a ratios in a laboratory
tank. A lascr was used as the iight source. and measurements of the radiant energy
flux were made at varying ranges and collector angles. The experimental procedure was
to neasure the cnergy at an off-axis collector angle 4’ at a radius r from the source.
The data were then integrated to obtain the total power on a spherical cap, with v as
the half angle of the cap, These experiments are described in reference 3.




COMPARISON OF EXPONENTIAL MODEL WITH
TWO OTHER SOURCES

Using equation 4, it is now possible to compare the predictions of the exponential
model with those of the Monte Carlo multiple-scattering model and the expeirimental
data accumulated by Duntley.

Theoretical predictions were provided by Funk for the chosen cases from the Monte
Carlo simulation model, and equation 4 was programmed on a desk calculator to give
predictions from the exponential model. Representative sets were chosen from Duntley’s
data to serve as a basis from which to assess the accuracy of the two visibility models.

The f 'P(63d§2 was interpolated from the table of the experimental volume scattering
distribution function as calculated by Duntley (table 1*). The seven aperture cone
half-angles chosen by Funk for the Monte Carlo model were used here. The angles
that Duntley defines in his experiments and those used in Gordon’s theoretical model
are related through the expression

tan 7' = 2 tan .

The angles v (and ¥') and the corresponding scattering probabilities are shown in
table 2.

Tables 3 through 11 show the radiant energy flux as a function of aperture and range
for three s/a ratios. The results of the calculations using equation 4 are shown in
tables 3, 6, and 9 for the ratios 3.56, 2.28, and 1.48, respectively. In a similar
manner, tables 4, 7, and 10 display the predictions of the Monte Carlo simuiation
model, and tables 5, 8, and 11 display the experimental results as compiled by Duntley.

Figures 2 through 22 show the predictions of the exponential multiple-scattering model
(designated as E-model in the graphs for brevity) as straight lines on szmi-logarithmic
paper. For comparison, the predictions of the Monte Carlo simulation model (desig-
nated as M-model) and the experimental data of Duntley (designated as D-data) appcar
as crosses and circles, respectively, on the appropriate exponential model line.

RELATIVE ERROR AS A FUNCTION OF RANGE

Figures 2 through 22 indicate that both the exponeniiai and Monte Carlo siinulation
model predictions give very close agrcement with the set of selected experimental data.
In order to see this agreement more easily, a simple type of error analysis was per-
formed to give an idea of the relative differences between the results of the two
models and the experimental data.

*Tables are placed at ihe end of Part I,
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Because the exponential model of Gordon is based upon the assumption of small angle
torward scuttering, the validity of the small angle approximation is reduced as the
number of scatterings increases. which tends to make the model predictions less accu-
rate. To show this, the unt of measurement for the range was changed from attenua-
tion length to scattering length. Now, the exponential model should tend to breax
down at the same range in all cases; i.c.. the model should break down after the same
number of scattering lengths, regardless of the s/a ratio. The scattering length, sR. can
be found from the attenuation length aR through

sR = 2R (8)
+ 4
3
where

sR = range (secattering lengths),
aR = range (attenuation lengths),
a = absorption coefficient,
s = scattering coefficient.

To find this average error. an error equation of the form

7 angles 2) 1)

Z In (thecretical model flux
experimental flux

i=1

7

Error =

(9)

was used to find an average error value over all of the seven aperture cone half-angles.
Table 12 shows the results of these calculations. The errors between the exponential
model predictions and the experimental values are denoted by E/D, while the errors
between the Monte Carlo simulation mcdel pradictions and the experimental values are
denoted by M/D. Figures 23 through 25 display these results for the three s/a ratios
investigated.

RELATIVE ERROR AS A FUNCTION OF APERTURE ANGLE

Another way of examining the differences between the predicted radiant erergy flux
and the experimental data is to caleulate the error averaged over all the ranges for the
various aperture cone half-angles. In this case, the formuala used to calculate the
average error s given by

10 ranges

X , 2) h
Z ln( theoretical model flux > ‘

experimental flux

1]
—-
1}
—

Error e A (10)

10
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The results of these calculations for the exponential model (E/D) and the Monte Carlo
simulation model (M/D) are summarized in table 13. Figures 26 through 28 display
3 these results for the three s/a ratios investigated.
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CONCLUSIONS

By examining figures 23 through 25, it can be seen that the differences between the
predictions of the exponential model and the multiple-scattering simulation model for
ranges up to six scattering lengths are not very significant. In terms of attenuation
lengths, this range corresponds to seven to ten attenuatior lengths, depending on the
s/a ratio. The exponential model does tend here to slightly better predict this particu-
lar set of experimental data, but it is also apparent from these graphs that when the
exponential model does break down at the longer ranges, the Monte Carlo simulation
method still continues tc offer reasonable predictions for calculating effective aitenua-
tion coefficients.

Looking at figures 26 through 28, it is apparent that the accuracy of the exponential
model is greater for small angles (less than 2°) and large angles (greater than 10°), but
that the Monte Carlo simulation model appears better able to predict the experimental
results for the intermediate angles. Again. the differences are undoubtedly not very
significant.

In addition, it must be stressed that the accuracy of the two models Pas been assessed
here on the basis of only one set of experimental data. While there is no reason to
believe that the data are biased in any manner, such a limited comparison may not
yield the same results as one supported on a broader base of experiment. Such a
comparison may show slight differences in the relative accuracy of the two models.

Therefore, in the final analysis, it can be stated that the ranges up to seven to ten
attenuation lengths, this simple, exponential formula rivals the Monte Carlo model in
accuracy of predicting radiant energy flux or on-axis irradiance due to conical beams
and surpasses it in ease of use. Wlen supplied with a table of volume scattering
distribution functions. one can casily predict what fraction of the energy produced by
a narrow-beam light source will reach a target of known size located at selected
distances from the source. The limitation to ranges of less than seven to ten attenua-
tion lengths is not a disabilitating one since the most sophisticated underwater viewing
systems now available can detect an object at a maximum range of only about seven
attenuation lengths. However, for questions other than flux through an aperture or
on-axis irradiance or for ranges greater than six scattering lengtiis. one must at present
look for tools other than the cxponential model, such as Monte Carlo analysis.
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Table 1. Volume Scattering Distribution Functions From S. Q. Duntley.
v j}:,P(e)dn y' fy,P(e)dQ
0.000 0.00000 6.100 0.01530
0.120 0. 02040 0.150 0.02720
0.170 0.03170 0.200 0.03790
0.250 0.04700 0.300 0. 05570
0. 350 0.06380 0.400 0.07150
0.500 0.08520 0.600 0.09800
0.700 0.11000 0.800 0.12130
0. 900 0.13240 1.000 0.14220
1.200 0.16130 1.500 0.18630
1. 700 0.20290 2.000 0.22760
2.500 0.26050 3.000 0.29180
3.500 0. 32350 4,000 0.35390
5.000 0. 0510 6.000 0.45030
7.000 0.49300 8.000 0. 52790
9.000 0.56050 10.000 0.58990

12,000 0.63490 15.000 0.68760
17.000 0.72070 20.000 0.76180
25.000 0.81170 30.000 0.84650
35.000 0. 87540 40.000 0.89670
50.000 0.92590 60.000 0.94370
75.000 0.96090 99. 000 0.97160
105. 000 0. 97970 120. 000 0.98600
135. 000 0.99140 150.000 0. 99580
165.000 0.99880 180.000 1.00000
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Table 2.

Interpolated Volume Scattering Distribution Functions.

v v' fy'P(O)dﬂ
0.10° 0.20° 0.0379
1.00° 2.00° 0. 2276
2.51° 5.01° 0.4055
6.31° 13,47° 0.6432
10.00° 15.43° 0.7540
25,11° 43.15° 0. ©059
100. 00° 109.43° 0. 9816
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